DeepReduce: A Sparse-tensor Communication Framework for Federated Deep LearningDownload PDF

21 May 2021, 20:44 (modified: 27 Jan 2022, 08:55)NeurIPS 2021 PosterReaders: Everyone
Keywords: Federated Learning, Compressed Communication, Sparse Tensors, Bloom Filter
TL;DR: This paper introduces DeepReduce, a versatile framework for the compressed communication of sparse tensors, tailored to federated deep learning.
Abstract: Sparse tensors appear frequently in federated deep learning, either as a direct artifact of the deep neural network’s gradients, or as a result of an explicit sparsification process. Existing communication primitives are agnostic to the peculiarities of deep learning; consequently, they impose unnecessary communication overhead. This paper introduces DeepReduce, a versatile framework for the compressed communication of sparse tensors, tailored to federated deep learning. DeepReduce decomposes sparse tensors into two sets, values and indices, and allows both independent and combined compression of these sets. We support a variety of common compressors, such as Deflate for values, or run-length encoding for indices. We also propose two novel compression schemes that achieve superior results: curve fitting-based for values, and bloom filter-based for indices. DeepReduce is orthogonal to existing gradient sparsifiers and can be applied in conjunction with them, transparently to the end-user, to significantly lower the communication overhead. As proof of concept, we implement our approach on TensorFlow and PyTorch. Our experiments with large real models demonstrate that DeepReduce transmits 320% less data than existing sparsifiers, without affecting accuracy. Code is available at https://github.com/hangxu0304/DeepReduce.
Supplementary Material: pdf
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Code: https://github.com/hangxu0304/DeepReduce
19 Replies

Loading