Amortized Posterior Sampling with Diffusion Prior Distillation

Published: 06 Mar 2025, Last Modified: 24 Apr 2025FPI-ICLR2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Inverse Problems, Diffusion Models, Variational Inference
Abstract: We propose Amortized Posterior Sampling (APS), a novel variational inference approach for efficient posterior sampling in inverse problems. Our method trains a conditional flow model to minimize the divergence between the variational distribution and the posterior distribution implicitly defined by the diffusion model. This results in a powerful, amortized sampler capable of generating diverse posterior samples with a single neural function evaluation, generalizing across various measurements. Unlike existing methods, our approach is unsupervised, requires no paired training data, and is applicable to both Euclidean and non-Euclidean domains. We demonstrate its effectiveness on a range of tasks, including image restoration, manifold signal reconstruction, and climate data imputation. APS significantly outperforms existing approaches in computational efficiency while maintaining competitive reconstruction quality, enabling real-time, high-quality solutions to inverse problems across diverse domains.
Submission Number: 59
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview