DragonDiffusion: Enabling Drag-style Manipulation on Diffusion Models

Published: 16 Jan 2024, Last Modified: 28 Mar 2024ICLR 2024 spotlightEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Diffusion model, Image editing, Image generation
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: A tuning-free diffusion method for general and drag-style image editing.
Abstract: Despite the ability of text-to-image (T2I) diffusion models to generate high-quality images, transferring this ability to accurate image editing remains a challenge. In this paper, we propose a novel image editing method, DragonDiffusion, enabling Drag-style manipulation on Diffusion models. Specifically, we treat image editing as the change of feature correspondence in a pre-trained diffusion model. By leveraging feature correspondence, we develop energy functions that align with the editing target, transforming image editing operations into gradient guidance. Based on this guidance approach, we also construct multi-scale guidance that considers both semantic and geometric alignment. Furthermore, we incorporate a visual cross-attention strategy based on a memory bank design to ensure consistency between the edited result and original image. Benefiting from these efficient designs, all content editing and consistency operations come from the feature correspondence without extra model fine-tuning. Extensive experiments demonstrate that our method has promising performance on various image editing tasks, including within a single image (e.g., object moving, resizing, and content dragging) or across images (e.g., appearance replacing and object pasting). Code is available at https://github.com/MC-E/DragonDiffusion.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: generative models
Submission Number: 1354
Loading