Abstract: Orthogonal Matching Pursuit (OMP) is a canonical greedy pursuit algorithm for sparse approximation. Previous studies of OMP have considered the recovery of a sparse signal <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">${\mbi {x}}$</tex></formula> through <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\mmb {\Phi}}$</tex></formula> and <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\mbi {y}}={\mmb {\Phi}} {\mbi {x}}+{\mbi {b}}$</tex></formula> , where <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\mmb {\Phi}}$</tex></formula> is a matrix with more columns than rows and <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\mbi {b}}$</tex></formula> denotes the measurement noise. In this paper, based on Restricted Isometry Property (RIP), the performance of OMP is analyzed under general perturbations, which means both <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">${\mbi {y}}$</tex></formula> and <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\mmb {\Phi}}$</tex></formula> are perturbed. Though the exact recovery of an almost sparse signal <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">${\mbi {x}}$</tex></formula> is no longer feasible, the main contribution reveals that the support set of the best <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$k$</tex></formula> -term approximation of <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">${\mbi {x}}$</tex></formula> can be recovered under reasonable conditions. The error bound between <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\mbi {x}}$</tex></formula> and the estimation of OMP is also derived. By constructing an example it is also demonstrated that the sufficient conditions for support recovery of the best <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$k$</tex> </formula> -term approximation of <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\mbi {x}}$</tex></formula> are rather tight. When <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">${\mbi {x}}$</tex></formula> is strong-decaying, it is proved that the sufficient conditions for support recovery of the best <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$k$</tex> </formula> -term approximation of <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\mbi {x}}$</tex></formula> can be relaxed, and the support can even be recovered in the order of the entries' magnitude. Our results are also compared in detail with some related previous ones.
0 Replies
Loading