Downscaling Numerical Weather Models with GANs

Published: 02 Oct 2019, Last Modified: 16 May 2025OpenReview Archive Direct UploadEveryoneCC BY 4.0
Abstract: Abstract-Numerical simulation of weather is resolution-constrained due to the high computational cost of integrating the coupled PDEs that govern atmospheric motion. For example, the most highly-resolved numerical weather prediction models are limited to approximately 3 km. However many weather and climate impacts occur over much finer scales, especially in urban areas and regions with high topographic complexity like mountains or coastal regions. Thus several statistical methods have been developed in the climate community to downscale numerical model output to finer resolutions. This is conceptually similar to image super-resolution (SR) [1] and in this work we report the results of applying SR methods to the downscaling problem. In particular we test the extent to which a SR method based on a Generative Adversarial Network (GAN) can recover a grid of wind speed from an artificially downsampled version, compared against a standard bicubic upsampling approach and another machine learning based approach, SR-CNN [1]. We use ESRGAN ([2]) to learn to downscale wind speeds by a factor of 4 from a coarse grid. We find that we can recover spatial details with higher fidelity than bicubic upsampling or SR-CNN. The bicubic and SR-CNN methods perform better than ESRGAN on coarse metrics such as MSE. However, the high frequency power spectrum is captured remarkably well by the ESRGAN, virtually identical to the real data, while bicubic and SR-CNN fidelity drops significantly at high frequency. This indicates that SR is considerably better at matching the higher-order statistics of the dataset, consistent with the observation that the generated images are of superior visual quality compared with SR-CNN.
Loading