Built to Last: Lessons on Fostering a Student ML CommunityDownload PDF

Published: 24 Oct 2022, Last Modified: 05 May 2023WBRC 2022 PosterReaders: Everyone
TL;DR: Insights on how to foster an academic culture that encourages collaboration
Abstract: As the frontiers of machine learning (ML) continue to expand, the gap between the public understanding of ML and state-of-the-art research widens. While laboratory researchers benefit from easily accessible and encouraged collaboration with domain experts, the same cannot be said of newcomers to the field. At the undergraduate level, where socioeconomic inequality means some students have stronger backgrounds than their peers, increasing the accessibility of practical, hands-on opportunities in machine learning is essential to narrowing this gap. In this paper, we detail the approach of Machine Learning at Berkeley (ML@B), a university-based undergraduate student organization aimed at bridging this gap by encouraging collaboration with established figures in the field as well as within the organization itself. We have found integral to this process the practice of placing individuals in roles where they both create value for themselves and others enabling personal motivation to drive group success. This principle has guided the formulation of the diverse set of initiatives and programs we discuss here. We hope that the perspectives gained from ML@B provide insights into successfully integrating undergraduates into a technical environment and fostering an academic culture that encourages collaboration.
1 Reply