CLINB: A Climate Intelligence Benchmark for Foundational Models

ICLR 2026 Conference Submission19275 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Model, Evaluation, Climate Change, Climate Science, LLM for science, human-in-the-loop
TL;DR: A new benchmark for LLMs on climate questions using expert curated rubrics for evaluation.
Abstract: Evaluating how Large Language Models (LLMs) handle complex, specialized knowledge remains a critical challenge. We address this through the lens of climate change by introducing CLINB, a benchmark that assesses models on open-ended, grounded, multimodal question answering tasks with clear requirements for knowledge quality and evidential support. CLINB relies on a dataset of real users' questions and evaluation rubrics curated by leading climate scientists. We implement and validate a model-based evaluation process and evaluate several frontier models. Our findings reveal a critical dichotomy. Frontier models demonstrate remarkable knowledge synthesis capabilities, often exhibiting PhD-level understanding and presentation quality. They outperform ``hybrid" answers curated by domain experts assisted by weaker models. However, this performance is countered by failures in grounding. The quality of evidence varies, with substantial hallucination rates for references and images. We argue that bridging this gap between knowledge synthesis and verifiable attribution is essential for the deployment of AI in scientific workflows and that reliable, interpretable benchmarks like CLINB are needed to progress towards building trustworthy AI systems.
Primary Area: datasets and benchmarks
Submission Number: 19275
Loading