Abstract: This paper proposes a novel approach to calibrate the intrinsic camera parameters from a single image, which includes the silhouette of two spheres and two ellipses generated by the intersection between the line-structured laser light and the two spheres. This approach uses the vanishing line of a plane and its normal direction to calculate the orthogonal constraints on the image of absolute conic (IAC). And this plane is formed by the camera center and two sphere centers. In addition, the pair of the circular points of the light plane is calculated from the generalized eigenpairs from the intersection between the light plane and the spheres. The intrinsic parameters of the camera can then be recovered from the derived orthogonal constraint and the pair of circular points on the IAC. Furthermore, the 3D positions of these two sphere centers under the camera coordinate can be recovered from the camera intrinsic matrix and then used to evaluate the accuracy of the camera intrinsic matrix. Experiment results on both synthetic and real data show the accuracy and the feasibility of the proposed approach.
0 Replies
Loading