Abstract: To evaluate the robustness of DNNs, most of the adversarial methods such as FGSM, box-constrained L-BFGS, and ATN generate adversarial examples with small Lp-norm. However, these adversarial examples might contain many redundant perturbations. Removing these perturbations increases the quality of adversarial examples. Therefore, this paper proposes a method to improve the quality of adversarial examples by recognizing and then removing such perturbations. The proposed method includes two phases namely the autoencoder training phase and the improvement phase. In the autoencoder training phase, the proposed method trains an autoencoder that learns how to recognize redundant perturbations. In the second phase, the proposed method uses the trained autoencoder in combination with the greedy improvement step to produce more high-quality adversarial examples. The experiments on MNIST and CIFAR-10 have shown that the proposed method could improve the quality of adversarial examples significa
Loading