$\infty$-Diff: Infinite Resolution Diffusion with Subsampled Mollified States

Published: 16 Jan 2024, Last Modified: 05 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Generative Models, Diffusion Models, Infinite Resolution
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: This paper introduces $\infty$-Diff, a generative diffusion model defined in an infinite-dimensional Hilbert space, which can model infinite resolution data. By training on randomly sampled subsets of coordinates and denoising content only at those locations, we learn a continuous function for arbitrary resolution sampling. Unlike prior neural field-based infinite-dimensional models, which use point-wise functions requiring latent compression, our method employs non-local integral operators to map between Hilbert spaces, allowing spatial context aggregation. This is achieved with an efficient multi-scale function-space architecture that operates directly on raw sparse coordinates, coupled with a mollified diffusion process that smooths out irregularities. Through experiments on high-resolution datasets, we found that even at an $8\times$ subsampling rate, our model retains high-quality diffusion. This leads to significant run-time and memory savings, delivers samples with lower FID scores, and scales beyond the training resolution while retaining detail.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: generative models
Submission Number: 4814