Keywords: Autoencoder, Structure, Generative, Architecture, Disentanglement, Regularization, Hybridization
TL;DR: A novel autoencoder architecture to structure the learned representation without regularizing the objective and improve sampling for generative modeling.
Abstract: We study the problem of self-supervised structured representation learning using autoencoders for downstream tasks such as generative modeling. Unlike most methods which rely on matching an arbitrary, relatively unstructured, prior distribution for sampling, we propose a sampling technique that relies solely on the independence of latent variables, thereby avoiding the trade-off between reconstruction quality and generative performance typically observed in VAEs. We design a novel autoencoder architecture capable of learning a structured representation without the need for aggressive regularization. Our structural decoders learn a hierarchy of latent variables, thereby ordering the information without any additional regularization or supervision. We demonstrate how these models learn a representation that improves results in a variety of downstream tasks including generation, disentanglement, and extrapolation using several challenging and natural image datasets.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
15 Replies
Loading