ASAP: Learning Generalizable Online Bin Packing via Adaptive Selection After Pruning

Published: 01 Jan 2025, Last Modified: 21 Jul 2025CoRR 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Recently, deep reinforcement learning (DRL) has achieved promising results in solving online 3D Bin Packing Problems (3D-BPP). However, these DRL-based policies may perform poorly on new instances due to distribution shift. Besides generalization, we also consider adaptation, completely overlooked by previous work, which aims at rapidly fine-tuning these policies to a new test distribution. To tackle both generalization and adaptation issues, we propose ASAP, which decomposes a solver's decision-making into two policies, one for proposal and one for selection. The role of the proposal policy is to suggest promising actions, which allows the selection policy to choose among them. To effectively learn these policies, we introduce a training framework that combines pre-training and post-training, enhanced by meta-learning. During online adaptation, we only fine-tune the selection policy to rapidly adapt to a test distribution. Our experiments demonstrate that ASAP exhibits excellent generalization and adaptation capabilities on in-distribution and out-of-distribution instances for both discrete and continuous setups.
Loading