Practical Differentially Private Hyperparameter Tuning with Subsampling

Published: 21 Sept 2023, Last Modified: 15 Jan 2024NeurIPS 2023 posterEveryoneRevisionsBibTeX
Keywords: differential privacy, hyperparameter tuning, Rényi differential privacy, computational efficiency, DP-SGD
TL;DR: We lower the privacy cost and the compute cost of DP hyperparameter tuning
Abstract: Tuning the hyperparameters of differentially private (DP) machine learning (ML) algorithms often requires use of sensitive data and this may leak private information via hyperparameter values. Recently, Papernot and Steinke (2022) proposed a certain class of DP hyperparameter tuning algorithms, where the number of random search samples is randomized. Commonly, these algorithms still considerably increase the DP privacy parameter $\varepsilon$ over non-tuned DP ML model training and can be computationally heavy as evaluating each hyperparameter candidate requires a new training run. We focus on lowering both the DP bounds and the compute cost of these methods by using only a random subset of the sensitive data for the hyperparameter tuning and by appropriately extrapolating the optimal values to a larger dataset. We carry out a Rényi differential privacy analysis for the proposed method and experimentally show that it consistently leads to better privacy-utility trade-off than the baseline method by Papernot and Steinke.
Submission Number: 10267
Loading