Periodicity May Be Emanative: Hierarchical Contrastive Learning for Sequential RecommendationDownload PDFOpen Website

Published: 01 Jan 2023, Last Modified: 13 Nov 2023CIKM 2023Readers: Everyone
Abstract: Nowadays, contrastive self-supervised learning has been widely incorporated into sequential recommender systems. However, most existing contrastive sequential recommender systems simply emphasize the overall information of interaction sequences, thereby neglecting the special periodic patterns of user behavior. In this study, we propose that users exhibit emanative periodicity towards a group of correlated items, i.e., user behavior follow a certain periodic pattern while their interests may shift from one item to other related items over time. In light of this observation, we present a hierarchical contrastive learning framework to model EmAnative periodicity for SEquential Recommendation (referred to as EASE). Specifically, we design dual-channel contrastive strategy from the perspective of correlation and periodicity to capture emanative periodic patterns. Furthermore, we extend the traditional binary contrastive loss with hierarchical constraint to handle hierarchical contrastive samples, thus preserving the inherent hierarchical information of correlation and periodicity. Comprehensive experiments conducted on five datasets substantiate the effectiveness of our proposed EASE in improving sequential recommendation.
0 Replies

Loading