Pattern Transfer Learning for Reinforcement Learning in Order DispatchingDownload PDFOpen Website

2021 (modified: 24 Apr 2023)CoRR 2021Readers: Everyone
Abstract: Order dispatch is one of the central problems to ride-sharing platforms. Recently, value-based reinforcement learning algorithms have shown promising performance on this problem. However, in real-world applications, the non-stationarity of the demand-supply system poses challenges to re-utilizing data generated in different time periods to learn the value function. In this work, motivated by the fact that the relative relationship between the values of some states is largely stable across various environments, we propose a pattern transfer learning framework for value-based reinforcement learning in the order dispatch problem. Our method efficiently captures the value patterns by incorporating a concordance penalty. The superior performance of the proposed method is supported by experiments.
0 Replies

Loading