Modeling Student Learning with 3.8 Million Program Traces

ICLR 2026 Conference Submission19704 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: education, coding, interactive
Abstract: As programmers write code, they often edit and retry multiple times, creating rich “interaction traces” that reveal how they approach coding tasks and provide clues about their level of skill development. For novice programmers in particular, these traces reflect the diverse reasoning processes they employ to code, such as exploratory behavior to understand how a programming concept works, re-strategizing in response to bugs, and personalizing stylistic choices. In this work, we explore what can be learned from training language models on such reasoning traces: not just about code, but about coders, and particularly students learning to program. We introduce a dataset of over 3.8 million programming reasoning traces from users of PENCIL CODE, a free online educational platform used by students to learn simple programming concepts. Compared to models trained only on final programs or on synthetically-generated traces, we find that models trained on real traces are stronger at modeling diverse student behavior. Through both behavioral and probing analyses, we also find that many properties of code traces, such as goal backtracking or number of comments, can be predicted from learned representations of the students who write them. Building on this result, we show that we can help students recover from mistakes by steering code generation models to identify a sequence of edits that will results in more correct code while remaining close to the original student’s style. Together, our results suggest that many properties of code are properties of individual students and that training on edit traces can lead to models that are both more steerable and predictive of student behavior, even when evaluated solely on final program states.
Supplementary Material: pdf
Primary Area: datasets and benchmarks
Submission Number: 19704
Loading