Keywords: Multimodal Alignment, Curriculum Learning, Contrastive Local Attention
Abstract: Most multimodal models treat every negative pair alike, ignoring the ambiguous negatives that differ from the positive by only a small detail. We propose Boundary-A ware Curriculum with Local Attention(BACL), a lightweight add-on that turns these borderline cases into a curriculum signal. A Boundary-aware Negative Sampler gradually raises difficulty, while a Contrastive Local Attention loss highlights where the mismatch occurs. The two modules are fully differentiable and work with any off-the-shelf dual encoder. Theory predicts a fast $\tilde{\mathcal{O}}(1/n)$ error rate; practice shows up to +32 \% R@1 over CLIP and new SOTA on four large-scale benchmarks, all without extra labels.
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 11715
Loading