Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio BarrierDownload PDF

Anonymous

22 Sept 2022, 12:36 (modified: 18 Nov 2022, 05:02)ICLR 2023 Conference Blind SubmissionReaders: Everyone
Keywords: reinforcement learning, sample efficiency, resets
TL;DR: The combination of a large number of updates and resets drastically improves the sample efficiency of deep RL algorithms.
Abstract: Increasing the replay ratio, the number of updates of an agent's parameters per environment interaction, is an appealing strategy for improving the sample efficiency of deep reinforcement learning algorithms. In this work, we show that fully or partially resetting the parameters of deep reinforcement learning agents causes better replay ratio scaling capabilities to emerge. We push the limits of the sample efficiency of carefully-modified algorithms by training them using an order of magnitude more updates than usual, significantly improving their performance in the Atari 100k and DeepMind Control Suite benchmarks. We then provide an analysis of the design choices required for favorable replay ratio scaling to be possible and discuss inherent limits and tradeoffs.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Reinforcement Learning (eg, decision and control, planning, hierarchical RL, robotics)
13 Replies

Loading