On the Importance of Sampling in Training GCNs: Convergence Analysis and Variance ReductionDownload PDF

28 Sept 2020 (modified: 05 May 2023)ICLR 2021 Conference Blind SubmissionReaders: Everyone
Keywords: Graph neural network, large-scale machine learning, convergence analysis
Abstract: Graph Convolutional Networks (GCNs) have achieved impressive empirical advancement across a wide variety of graph-related applications. Despite their great success, training GCNs on large graphs suffers from computational and memory issues. A potential path to circumvent these obstacles is sampling-based methods, where at each layer a subset of nodes is sampled. Although recent studies have empirically demonstrated the effectiveness of sampling-based methods, these works lack theoretical convergence guarantees under realistic settings and cannot fully leverage the information of evolving parameters during optimization. In this paper, we describe and analyze a general \textbf{\textit{doubly variance reduction}} schema that can accelerate any sampling method under the memory budget. The motivating impetus for the proposed schema is a careful analysis for the variance of sampling methods where it is shown that the induced variance can be decomposed into node embedding approximation variance (\emph{zeroth-order variance}) during forward propagation and layerwise-gradient variance (\emph{first-order variance}) during backward propagation. We theoretically analyze the convergence of the proposed schema and show that it enjoys an $\mathcal{O}(1/T)$ convergence rate. We complement our theoretical results by integrating the proposed schema in different sampling methods and applying them to different large real-world graphs.
One-sentence Summary: Provide theoretical analysis on sampling-based GCN training and new algorithms to speed up training process.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Supplementary Material: zip
Reviewed Version (pdf): https://openreview.net/references/pdf?id=LmKTHy6z_2
14 Replies

Loading