Dual-Stage Agglomeration Strategy: An Approach of Flexible Partitioning for Energy Internet

Published: 01 Jan 2024, Last Modified: 13 May 2025IEEE Syst. J. 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: With the active participation of numerous end-users in the development of low-carbon energy ecosystems, the continuous expansion of the Energy Internet diminishes the timeliness of energy transmission and increases the complexity of energy scheduling, which leads to reduced energy efficiency. To solve it, a partitioning approach based on dual-stage agglomeration for Energy Internet is proposed in this article. First, the entropy weight of Energy Internet is proposed to assess the line significance of energy transmission, while establishing a uniform criterion of judgment by considering the energy loss of heterogeneous energy sources. Second, as the first stage of partitioning, the local expansion and boundary detection mechanism is proposed to realize localized node agglomeration and generate small-scale regions while ensuring all nodes contained in subregions. Furthermore, the hierarchical region agglomeration mechanism is proposed as the second stage of partitioning, which can aggregate the generated small-scale regions and improve the quality of the partitioning result based on flexible partitioning. Through the above stages, the proposed partitioning approach improves energy allocation, transmission and global efficiency of Energy Internet. Finally, case studies of an Energy Internet with 171-node are presented to validate the proposed approach.
Loading