Learning Multi-agent Behaviors from Distributed and Streaming Demonstrations

Published: 21 Sept 2023, Last Modified: 02 Nov 2023NeurIPS 2023 posterEveryoneRevisionsBibTeX
Keywords: inverse reinforcement learning; distributed online bi-level optimization
Abstract: This paper considers the problem of inferring the behaviors of multiple interacting experts by estimating their reward functions and constraints where the distributed demonstrated trajectories are sequentially revealed to a group of learners. We formulate the problem as a distributed online bi-level optimization problem where the outer-level problem is to estimate the reward functions and the inner-level problem is to learn the constraints and corresponding policies. We propose a novel ``multi-agent behavior inference from distributed and streaming demonstrations" (MA-BIRDS) algorithm that allows the learners to solve the outer-level and inner-level problems in a single loop through intermittent communications. We formally guarantee that the distributed learners achieve consensus on reward functions, constraints, and policies, the average local regret (over $N$ online iterations) decreases at the rate of $O(1/N^{1-\eta_1}+1/N^{1-\eta_2}+1/N)$, and the cumulative constraint violation increases sub-linearly at the rate of $O(N^{\eta_2}+1)$ where $\eta_1,\eta_2\in (1/2,1)$.
Supplementary Material: zip
Submission Number: 4866
Loading