Keywords: visual reprogramming, adversarial robustness, risk bound
Abstract: Visual reprogramming (VR) leverages well-developed pre-trained models (e.g., a pre-trained classifier on ImageNet) to tackle target tasks (e.g., a traffic sign recognition task), without the need for training from scratch. Despite the effectiveness of previous VR methods, all of them did not consider the adversarial robustness of reprogrammed models against adversarial attacks, which could lead to unpredictable problems in safety-crucial target tasks. In this paper, we empirically find that reprogramming pre-trained models with adversarial robustness and incorporating adversarial samples from the target task during reprogramming can both improve the adversarial robustness of reprogrammed models. Furthermore, we propose a theoretically guaranteed adversarial robustness risk upper bound for VR, which validates our empirical findings and could provide a theoretical foundation for future research. Extensive experiments demonstrate that by adopting the strategies revealed in our empirical findings, the adversarial robustness of reprogrammed models can be enhanced.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10384
Loading