UD-Mamba: A pixel-level uncertainty-driven mamba model for medical image segmentation

25 Sept 2024 (modified: 15 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Medical Image Segmentation, State Space Models, Mamba, Uncertainty
Abstract:

Recent advancements have highlighted the Mamba framework, a state-space models (SSMs) known for its efficiency in capturing long-range dependencies with linear computational complexity. While Mamba has shown competitive performance in medical image segmentation, it encounters difficulties in modeling local features due to the sporadic nature of traditional location-based scanning methods and the complex, ambiguous boundaries often present in medical images. To overcome these challenges, we propose Uncertainty-Driven Mamba (UD-Mamba), which redefines the pixel-order scanning process by incorporating channel uncertainty into the scanning mechanism. UD-Mamba introduces two key scanning techniques: sequential scanning, which prioritizes regions with high uncertainty by scanning in a row-by-row fashion, and skip scanning, which processes columns vertically, moving from high-to-low or low-to-high uncertainty at fixed intervals. Sequential scanning efficiently clusters high-uncertainty regions, such as boundaries and foreground objects, to improve segmentation precision, while skip scanning enhances the interaction between background and foreground regions, allowing for timely integration of background information to support more accurate foreground inference. Recognizing the advantages of scanning from certain to uncertain areas, we introduce four learnable parameters to balance the importance of features extracted from different scanning methods. Additionally, a cosine consistency loss is employed to mitigate the drawbacks of transitioning between uncertain and certain regions during the scanning process. Our method demonstrates robust segmentation performance, validated across three distinct medical imaging datasets involving pathology, dermatological lesions, and cardiac tasks.

Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4085
Loading