Keywords: surface reconstruction, kernel methods, neural tangent kernel
TL;DR: We use and theoretically analyze the family of Matérn kernels for tunable implicit surface reconstruction, demonstrating that they outperform recently employed arc-cosine kernels.
Abstract: We propose to use the family of Matérn kernels for implicit surface reconstruction, building upon the recent success of kernel methods for 3D reconstruction of oriented point clouds. As we show from a theoretical and practical perspective, Matérn kernels have some appealing properties which make them particularly well suited for surface reconstruction---outperforming state-of-the-art methods based on the arc-cosine kernel while being significantly easier to implement, faster to compute, and scalable. Being stationary, we demonstrate that Matérn kernels allow for tunable surface reconstruction in the same way as Fourier feature mappings help coordinate-based MLPs overcome spectral bias. Moreover, we theoretically analyze Matérn kernels' connection to SIREN networks as well as their relation to previously employed arc-cosine kernels. Finally, based on recently introduced Neural Kernel Fields, we present data-dependent Matérn kernels and conclude that especially the Laplace kernel (being part of the Matérn family) is extremely competitive, performing almost on par with state-of-the-art methods in the noise-free case while having a more than five times shorter training time.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 434
Loading