Abstract: A common assumption in meta-learning is that meta-training and meta-test tasks are drawn from the same distribution. However, this assumption is often not fulfilled. Under such task shift, standard meta-learning algorithms do not work as desired since their unbiasedness is no longer maintained. In this paper, we propose a new meta-learning method called Importance Weighted Meta-Learning (IWML), which preserves unbiasedness even under task shift. Our approach uses both labeled meta-training datasets and unlabeled datasets in tasks obtained from the meta-test task distribution to assign weights to each meta-training task. These weights are determined by the ratio of meta-test and meta-training task densities. Our method enables the model to focus more on the meta-training tasks that closely align with meta-test tasks during the meta-training process. We meta-learn neural network-based models by minimizing the expected weighted meta-training error, which is an unbiased estimator of the expected error over meta-test tasks. The task density ratio is estimated using kernel density estimation, where the distance between tasks is measured by the maximum mean discrepancy. Our empirical evaluation of few-shot classification datasets demonstrates a significant improvement of IWML over existing approaches.
Submission Length: Regular submission (no more than 12 pages of main content)
Assigned Action Editor: ~Erin_Grant1
Submission Number: 2606
Loading