Keywords: reinforcement learning, policy optimization, $q$-exponential family, heavy-tailed policies, sparse policies
TL;DR: we explored a family of policy distributions that are promising alternatives to the standard Gaussian policy in policy optimization
Abstract: Policy optimization methods benefit from a simple and tractable policy parametrization, usually the Gaussian for continuous action spaces. In this paper, we consider a broader policy family that remains tractable: the $q$-exponential family.
This family of policies is flexible, allowing the specification of both heavy-tailed policies ($q>1$) and light-tailed policies ($q<1$). This paper examines the interplay between $q$-exponential policies for several actor-critic algorithms conducted on both online and offline problems. We find that heavy-tailed policies are more effective in general and can consistently improve on Gaussian.
In particular, we find the Student's t-distribution to be more stable than the Gaussian across settings and that a heavy-tailed $q$-Gaussian for Tsallis Advantage Weighted Actor-Critic consistently performs well in offline benchmark problems.
In summary, we find that the Student's t policy a strong candidate for drop-in replacement to the Gaussian.
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5488
Loading