**Keywords:**multi-armed bandits, differential privacy, shuffle model

**Abstract:**We give an $(\varepsilon,\delta)$-differentially private algorithm for the Multi-Armed Bandit (MAB) problem in the shuffle model with a distribution-dependent regret of $O\left(\left(\sum_{a:\Delta_a>0}\frac{\log T}{\Delta_a}\right)+\frac{k\sqrt{\log\frac{1}{\delta}}\log T}{\varepsilon}\right)$, and a distribution-independent regret of $O\left(\sqrt{kT\log T}+\frac{k\sqrt{\log\frac{1}{\delta}}\log T}{\varepsilon}\right)$, where $T$ is the number of rounds, $\Delta_a$ is the suboptimality gap of the action $a$, and $k$ is the total number of actions. Our upper bound almost matches the regret of the best known algorithms for the centralized model, and significantly outperforms the best known algorithm in the local model.

**Code Of Conduct:**I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.

**Supplementary Material:**pdf

0 Replies

Loading