Keywords: benchmark;human feedback;LLMs
Abstract: Human feedback is crucial in the interactions between humans and Large Language Models (LLMs). However, existing research primarily focuses on benchmarking LLMs in single-turn dialogues. Even in benchmarks designed for multi-turn dialogues, the user inputs are often independent, neglecting the nuanced and complex nature of human feedback within real-world usage scenarios. To fill this research gap, we introduce FB-Bench, a fine-grained, multi-task benchmark designed to evaluate LLMs' responsiveness to human feedback in real-world usage scenarios. Drawing from the two main interaction scenarios, FB-Bench comprises 734 meticulously curated samples, encompassing eight task types, five deficiency types of response, and nine feedback types. We extensively evaluate a broad array of popular LLMs, revealing significant variations in their performance across different interaction scenarios. Further analysis indicates that task, human feedback, and deficiencies of previous responses can also significantly impact LLMs' responsiveness. Our findings underscore both the strengths and limitations of current models, providing valuable insights and directions for future research. Both the toolkits and the dataset of FB-Bench will be released soon.
Supplementary Material: zip
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13437
Loading