No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images

Published: 22 Jan 2025, Last Modified: 29 Mar 2025ICLR 2025 OralEveryoneRevisionsBibTeXCC BY 4.0
Keywords: 3D Gaussian Splatting, Pose Free, Pose Estimation, Novel View Synthesis, 3D Reconstruction
TL;DR: NoPoSplat is a novel feed-forward model that reconstructs scenes from unposed images by predicting Gaussians in a canonical space, demonstrating superior performance in both novel view synthesis and pose estimation.
Abstract: We introduce NoPoSplat, a feed-forward model capable of reconstructing 3D scenes parameterized by 3D Gaussians from unposed sparse multi-view images. Our model, trained exclusively with photometric loss, achieves real-time 3D Gaussian reconstruction during inference. To eliminate the need for accurate pose input during reconstruction, we anchor one input view's local camera coordinates as the canonical space and train the network to predict Gaussian primitives for all views within this space. This approach obviates the need to transform Gaussian primitives from local coordinates into a global coordinate system, thus avoiding errors associated with per-frame Gaussians and pose estimation. To resolve scale ambiguity, we design and compare various intrinsic embedding methods, ultimately opting to convert camera intrinsics into a token embedding and concatenate it with image tokens as input to the model, enabling accurate scene scale prediction. We utilize the reconstructed 3D Gaussians for novel view synthesis and pose estimation tasks and propose a two-stage coarse-to-fine pipeline for accurate pose estimation. Experimental results demonstrate that our pose-free approach can achieve superior novel view synthesis quality compared to pose-required methods, particularly in scenarios with limited input image overlap. For pose estimation, our method, trained without ground truth depth or explicit matching loss, significantly outperforms the state-of-the-art methods with substantial improvements. This work makes significant advances in pose-free generalizable 3D reconstruction and demonstrates its applicability to real-world scenarios. Code and trained models are available at https://noposplat.github.io/.
Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3116
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview