Cautious Optimism: A Meta-Algorithm for Near-Constant Regret in General Games

Published: 22 Sept 2025, Last Modified: 01 Dec 2025NeurIPS 2025 WorkshopEveryoneRevisionsBibTeXCC BY 4.0
Keywords: No-regret Learning, Learning Dynamics, Equilibria Computation, Computational Game Theory
Abstract: Recent work [Soleymani et al. , 2025] introduced a variant of Optimistic Multiplicative Weights Updates (OMWU) that adaptively controls the learning pace in a dynamic, non-monotone manner, achieving new state-of-the-art regret minimization guarantees in general games. In this work, we demonstrate that no-regret learning acceleration through adaptive pacing of the learners is not an isolated phenomenon. We introduce Cautious Optimism, a framework for substantially faster regularized learning in general games. Cautious Optimism takes as input any instance of Follow-the-Regularized-Leader (FTRL) and outputs an accelerated no-regret learning algorithm by pacing the underlying FTRL with minimal computational overhead. Importantly, we retain uncoupledness (learners do not need to know other players’ utilities). Cautious Optimistic FTRL achieves near-optimal $O_{T}(\log T)$ regret in diverse self-play (mixing-and-matching regularizers) while preserving the optimal $O(\sqrt{T})$ regret in adversarial scenarios. In contrast to prior works (e.g. Syrgkanis et al . [2015], Daskalakis et al . [2021]), our analysis does not rely on monotonic step-sizes, showcasing a novel route for fast learning in general games.
Submission Number: 134
Loading