Don't Pour Cereal into Coffee: Differentiable Temporal Logic for Temporal Action SegmentationDownload PDF

Published: 31 Oct 2022, Last Modified: 11 Jan 2023NeurIPS 2022 AcceptReaders: Everyone
Keywords: Temporal action segmentation, linear temporal logic, neurosymbolic methods
TL;DR: We propose a differentiable linear temporal logic framework to provide explicit temporal constraints to action segmentation models, which results in improved performance.
Abstract: We propose Differentiable Temporal Logic (DTL), a model-agnostic framework that introduces temporal constraints to deep networks. DTL treats the outputs of a network as a truth assignment of a temporal logic formula, and computes a temporal logic loss reflecting the consistency between the output and the constraints. We propose a comprehensive set of constraints, which are implicit in data annotations, and incorporate them with deep networks via DTL. We evaluate the effectiveness of DTL on the temporal action segmentation task and observe improved performance and reduced logical errors in the output of different task models. Furthermore, we provide an extensive analysis to visualize the desirable effects of DTL.
Supplementary Material: pdf
15 Replies