Keywords: language model, moral dilemma, model alignment, machine ethics, value alignment
Abstract: As users increasingly seek guidance from LLMs for decision-making in daily life, many of these decisions are not clear-cut and depend significantly on the personal values and ethical standards of people. We present DailyDilemmas, a dataset of 1,360 moral dilemmas encountered in everyday life. Each dilemma presents two possible actions, along with affected parties and relevant human values for each action. Based on these dilemmas, we gather a repository of human values covering diverse everyday topics, such as interpersonal relationships, workplace, and environmental issues. With DailyDilemmas, we evaluate LLMs on these dilemmas to determine what action they will choose and the values represented by these action choices. Then, we analyze values through the lens of five theoretical frameworks inspired by sociology, psychology, and philosophy, including the World Values Survey, Moral Foundations Theory, Maslow's Hierarchy of Needs, Aristotle's Virtues, and Plutchik's Wheel of Emotions. For instance, we find LLMs are most aligned with self-expression over survival in World Values Survey and care over loyalty in Moral Foundations Theory. Interestingly, we find substantial preference differences in models for some core values. For example, for truthfulness, Mixtral-8x7B neglects it by 9.7% while GPT-4-turbo selects it by 9.4%. We also study the recent guidance released by OpenAI (ModelSpec), and Anthropic (Constitutional AI) to understand how their designated principles reflect their models' actual value prioritization when facing nuanced moral reasoning in daily-life settings. Finally, we find that end users cannot effectively steer such prioritization using system prompts.
Supplementary Material: zip
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12857
Loading