Keywords: GFlowNets
TL;DR: We derive non-vacuous statistical guarantees and introduce the first distributed learning method for GFlowNets with network-level parallelization.
Abstract: Conventional wisdom attributes the success of Generative Flow Networks (GFlowNets) to their ability to exploit the compositional structure of the sample space for learning generalizable flow functions (Bengio et al., 2021). Despite the abundance of empirical evidence, formalizing this belief with verifiable non-vacuous statistical guarantees has remained elusive. We address this issue with the first data-dependent generalization bounds for GFlowNets. We also elucidate the negative impact of the state space size on the generalization performance of these models via Azuma-Hoeffding-type oracle PAC-Bayesian inequalities. We leverage our theoretical insights to design a novel distributed learning algorithm for GFlowNets, which we call *Subgraph Asynchronous Learning* (SAL). In a nutshell, SAL utilizes a divide-and-conquer strategy: multiple GFlowNets are trained in parallel on smaller subnetworks of the flow network, and then aggregated with an additional GFlowNet that allocates appropriate flow to each subnetwork. Our experiments with synthetic and real-world problems demonstrate the benefits of SAL over centralized training in terms of mode coverage and distribution matching.
Supplementary Material: zip
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11527
Loading