Keywords: conformal prediction, label noise
TL;DR: We present a conformal prediction method that is robust to label noise.
Abstract: Conformal Prediction (CP) is a method to control prediction uncertainty by producing a small prediction set, ensuring a predetermined probability that the true class lies within this set. This is commonly done by defining a score, based on the model predictions, and setting a threshold on this score using a validation set. In this study, we address the problem of CP calibration when we only have access to a validation set with noisy labels. We show how we can estimate the noise-free conformal threshold based on the noisy labeled data. Our solution is flexible and can accommodate various modeling assumptions regarding the label contamination process, without needing any information about the underlying data distribution or the internal mechanisms of the machine learning classifier. We develop a coverage guarantee for uniform noise that is effective even in tasks with a large number of classes. We dub our approach Noise-Aware Conformal Prediction (NACP) and show on several natural and medical image classification datasets, including ImageNet, that it significantly outperforms current noisy label methods and achieves results comparable to those obtained with a clean validation set.
Primary Area: interpretability and explainable AI
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4312
Loading