AlignTex: Pixel-Precise Texture Generation from Multi-view Artwork

Published: 01 Jan 2025, Last Modified: 12 Nov 2025ACM Trans. Graph. 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Current 3D asset creation pipelines typically consist of three stages: creating multi-view concept art, producing 3D meshes based on the artwork, and painting textures for the meshes—an often labor-intensive process. Automated texture generation offers significant acceleration, but prior methods, which fine-tune 2D diffusion models with multi-view input images, often fail to preserve pixel-level details. These methods primarily emphasize semantic and subject consistency, which do not meet the requirements of artwork-guided texture workflows. To address this, we present AlignTex, a novel framework for generating high-quality textures from 3D meshes and multi-view artwork, ensuring both appearance detail and geometric consistency. AlignTex operates in two stages: aligned image generation and texture refinement. The core of our approach, AlignNet, resolves complex misalignments by extracting information from both the artwork and the mesh, generating images compatible with orthographic projection while maintaining geometric and visual fidelity. After projecting aligned images into the texture space, further refinement addresses seams and self-occlusion using an inpainting model and a geometry-aware texture dilation method. Experimental results demonstrate that AlignTex outperforms baseline methods in generation quality and efficiency, offering a practical solution to enhance 3D asset creation in gaming and film production.
Loading