Abstract: The paper explains and illustrates how the concept of word classes can be added to the widely used open-source speech recognition toolkit Kaldi. The suggested extensions to existing Kaldi recipes are limited to the word-level grammar (G) and the pronunciation lexicon (L) models. The implementation to modify the weighted finite state transducers employed in Kaldi makes use of the OpenFST library. In experiments on small and mid-sized corpora with vocabulary sizes of 1.5 K and 5.5 K respectively a slight improvement of the word error rate is observed when the approach is tested with (hand-crafted) word classes. Furthermore it is shown that the introduction of sub-word unit models for open word classes can help to robustly detect and classify out-of-vocabulary words without impairing word recognition accuracy.
Loading