Non-monotonic Generation of Knowledge Paths for Context Understanding

Published: 01 Jan 2024, Last Modified: 06 Mar 2025ACM Trans. Manag. Inf. Syst. 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Knowledge graphs can be used to enhance text search and access by augmenting textual content with relevant background knowledge. While many large knowledge graphs are available, using them to make semantic connections between entities mentioned in the textual content remains to be a difficult task. In this work, we therefore introduce contextual path generation (CPG), which refers to the task of generating knowledge paths, contextual path, to explain the semantic connections between entities mentioned in textual documents with given knowledge graph. To perform the CPG task well, one has to address its three challenges, namely, path relevance, incomplete knowledge graph, and path well-formedness. This article designs a two-stage framework comprised of the following: (1) a knowledge-enabled embedding matching and learning-to-rank with multi-head self-attention context extractor to determine a set of context entities relevant to both the query entities and context document, and (2) a non-monotonic path generation method with pretrained transformer to generate high-quality contextual paths. Our experiment results on two real-world datasets show that our best performing CPG model successfully recovers 84.13% of ground truth contextual paths, outperforming the context window baselines. Finally, we demonstrate that the non-monotonic model generates more well-formed paths compared to the monotonic counterpart.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview