Keywords: neural representation
Abstract: Contextual semantic information plays a pivotal role in the brain's visual interpretation of the surrounding environment. When processing visual information, electrical signals within synapses facilitate the dynamic activation and deactivation of synaptic connections, guided by the contextual semantic information associated with different objects. In the realm of Artificial Intelligence (AI), neural networks have emerged as powerful tools to emulate complex signaling systems, enabling tasks such as classification and segmentation by understanding visual information. However, conventional neural networks have limitations in simulating the conditional activation and deactivation of synapses, collectively known as the connectome, a comprehensive map of neural connections in the brain. Additionally, the pixel-wise inference mechanism of conventional neural networks failed to account for the explicit utilization of contextual semantic information in the prediction process. To overcome these limitations, we developed a novel neural network, dubbed the Shape Memory Network (SMN), which excels in two key areas: (1) faithfully emulating the intricate mechanism of the brain's connectome, and (2) explicitly incorporating contextual semantic information during the inference process. The SMN memorizes the structure suitable for contextual semantic information and leverages this structure at the inference phase. The structural transformation emulates the conditional activation and deactivation of synaptic connections within the connectome. Rigorous experimentation carried out across a range of semantic segmentation benchmarks demonstrated the outstanding performance of the SMN, highlighting its superiority and effectiveness. Furthermore, our pioneering network on connectome emulation reveals the immense potential of the SMN for next-generation neural networks.
Supplementary Material: pdf
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11312
Loading