Abstract: In applications with large userbases such as crowdsourcing, social networks or recommender systems, selecting users is a common and challenging task. Different applications require different policies for selecting users, and implementing such policies is applicationspecific and laborious. To this end, we introduce a novel declarative framework that abstracts common components of the user selection problem, while allowing for domain-specific tuning. The framework is based on an ontology view of user profiles, with respect to which we define a query language for policy specification. Our language extends SPARQL with means for capturing soft constraints which are essential for worker selection. At the core of our query engine is then a novel efficient algorithm for handling these constraints. Our experimental study on real-life data indicates the effectiveness and flexibility of our approach, showing in particular that it outperforms existing task-specific solutions in prominent user selection tasks.
0 Replies
Loading