Abstract: Based on an investigation of online public opinion on the Nahel Merzouk protests in France, an approach for analyzing and predicting public opinion on protests based on large language model (LLM) is proposed, revealing the impact of emerging social media on the protests. We demonstrate that protests generate public opinion on social media with some lag, but that comment sentiment and expression are consistent with protest trends. As the protests unfolded, we analyzed the evolution of public sentiment. We constructed the prompt based on historical data to predict the protests using the p-tuning and Lora approach to fine-tune LLM. In addition, we discuss how to use blockchain technology to optimize distributed, self-organizing protests and reduce the potential for disinformation and violent conflict.
Loading