Keywords: Incremental learning, Model Reuse, Transfer learning
Abstract: This paper addresses the challenge of incremental learning in growing graphs with increasingly complex tasks. The goal is to continuously train a graph model to handle new tasks while retaining proficiency in previous tasks via memory replay. Existing methods usually overlook the importance of memory diversity, limiting in selecting high-quality memory from previous tasks and remembering broad previous knowledge within the scarce memory on graphs. To address that, we introduce a novel holistic Diversified Memory Selection and Generation (DMSG) framework for incremental learning in graphs, which first introduces a buffer selection strategy that considers both intra-class and inter-class diversities, employing an efficient greedy algorithm for sampling representative training nodes from graphs into memory buffers after learning each new task. Then, to adequately rememorize the knowledge preserved in the memory buffer when learning new tasks, a diversified memory generation replay method is introduced. This method utilizes a variational layer to generate the distribution of buffer node embeddings and sample synthesized ones for replaying. Furthermore, an adversarial variational embedding learning method and a reconstruction-based decoder are proposed to maintain the integrity and consolidate the generalization of the synthesized node embeddings, respectively. Extensive experimental results on publicly accessible datasets demonstrate the superiority of DMSG over state-of-the-art methods.
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4794
Loading