Keywords: protein contact prediction, transformer, co-evolution principle
Abstract: Proteins are the main machinery of life and protein functions are largely determined by their 3D structures. The measurement of the pairwise proximity between amino acids of a protein, known as inter-residue contact map, well characterizes the structural information of a protein. Protein contact prediction (PCP) is an essential building block of many protein structure related applications. The prevalent approach to contact prediction is based on estimating the inter-residue contacts using hand-crafted coevolutionary features derived from multiple sequence alignments (MSAs). To mitigate the information loss caused by hand-crafted features, some recently proposed methods try to learn residue co-evolutions directly from MSAs. These methods generally derive coevolutionary features by aggregating the learned residue representations from individual sequences with equal weights, which is inconsistent with the premise that residue co-evolutions are a reflection of collective covariation patterns of numerous homologous proteins. Moreover, non-homologous residues and gaps commonly exist in MSAs. By aggregating features from all homologs equally, the non-homologous information may cause misestimation of the residue co-evolutions. To overcome these issues, we propose an attention-based architecture, Co-evolution Transformer (CoT), for PCP. CoT jointly considers the information from all homologous sequences in the MSA to better capture global coevolutionary patterns. To mitigate the influence of the non-homologous information, CoT selectively aggregates the features from different homologs by assigning smaller weights to non-homologous sequences or residue pairs. Extensive experiments on two rigorous benchmark datasets demonstrate the effectiveness of CoT. In particular, CoT achieves a $51.6\%$ top-L long-range precision score for the Free Modeling (FM) domains on the CASP14 benchmark, which outperforms the winner group of CASP14 contact prediction challenge by $9.8\%$.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Supplementary Material: zip
TL;DR: We propose Co-evolution Transformer for improving protein contact prediction by learning residue co-evolutions from multiple sequence alignment
12 Replies
Loading