Multiple Views to Free Graph Augmentations

Published: 01 Jan 2024, Last Modified: 15 May 2025IEEE Trans. Comput. Soc. Syst. 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Self-supervised graph representation learning (GRL) has shown great success in scientific research and real-world applications. Nevertheless, one obstacle in GRL is the demand for graph augmentation (GA), which deeply impacts the representation qualities. On the one hand, GA supplements the data amount and enhances the robustness and quality of the representations. On the other hand, collocating appropriate augmentations claims nontrivial attempts. In this article, a new method to free GA is provided building a novel fuzzy view and two crisp views of the original graph. As all the views are transformed from the original graph, they are semantically similar and naturally considered to possess high-quality positive samples. In this way, the data amount is compensated to a degree without changing the raw node attributes or graph topology. Additionally, to ensure the diversity of the positives, asymmetric renormalization and noise perturbation are adopted. Experiments toward node-level tasks on several real-world datasets demonstrate the competition against several state-of-the-art models.
Loading