Choreographer: Learning and Adapting Skills in ImaginationDownload PDF

Published: 01 Feb 2023, Last Modified: 17 Sept 2023ICLR 2023 notable top 25%Readers: Everyone
Keywords: unsupervised reinforcement learning, skill learning, world models
TL;DR: Choreographer: a model-based agent that discovers and learns unsupervised skills in latent imagination, and it's able to efficiently coordinate and adapt the skills to solve downstream tasks.
Abstract: Unsupervised skill learning aims to learn a rich repertoire of behaviors without external supervision, providing artificial agents with the ability to control and influence the environment. However, without appropriate knowledge and exploration, skills may provide control only over a restricted area of the environment, limiting their applicability. Furthermore, it is unclear how to leverage the learned skill behaviors for adapting to downstream tasks in a data-efficient manner. We present Choreographer, a model-based agent that exploits its world model to learn and adapt skills in imagination. Our method decouples the exploration and skill learning processes, being able to discover skills in the latent state space of the model. During adaptation, the agent uses a meta-controller to evaluate and adapt the learned skills efficiently by deploying them in parallel in imagination. Choreographer is able to learn skills both from offline data, and by collecting data simultaneously with an exploration policy. The skills can be used to effectively adapt to downstream tasks, as we show in the URL benchmark, where we outperform previous approaches from both pixels and states inputs. The skills also explore the environment thoroughly, finding sparse rewards more frequently, as shown in goal-reaching tasks from the DMC Suite and Meta-World. Project website:
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Reinforcement Learning (eg, decision and control, planning, hierarchical RL, robotics)
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 2 code implementations](
12 Replies