Abstract: We add mobility to Place-Transition Petri nets: tokens are names for places, and an input token of a transition can be used in its postset to specify a destination. Mobile Petri nets are then further extended to dynamic nets by adding the possibility of creating new nets during the firing of a transition. In this way, starting from Petri nets, we define a simple hierarchy of nets with increasing degrees of dynamicity. For each class in this hierarchy, we provide its encoding in the former class.Our work was largely inspired by the join-calculus of Fournet and Gonthier, which turns out to be a (well-motivated) particular case of dynamic Petri nets. The main difference is that, in the preset of a transition, we allow both non-linear patterns (name unification) and (locally) free names for input places (that is, we remove the locality constraint, and preserve reflexion).
Loading