Abstract: Face detection generally requires prior boxes and an extra non-maximum suppression(NMS) post-processing in modern deep learning methods. However, anchor design and anchor matching strategy significantly affect the performance of face detectors, so we have to spend a lot of time on anchor designing for different business scenarios. The other issue is that NMS cannot be easily parallelized and it may become a bottleneck of detection speed. In this paper, we propose a simple yet efficient pure convolutional neural network face detection method, named dual-branch center face detector(DBCFace for short), which solve face detection via a dual branch fully convolutional framework without extra anchor design and NMS. Extensive experiments are conducted on four popular face detection benchmarks, including AFW, PASCAL face, FDDB, and WIDER FACE, demonstrating that our method is comparable with state-of-the-art methods while the speed is faster.
0 Replies
Loading