MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding

27 Sept 2024 (modified: 13 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: fMRI, Neural Decoding, Image Reconstruction
Abstract: Research efforts for visual decoding from fMRI signals have attracted considerable attention in research community. Still multi-subject fMRI decoding with one model has been considered intractable due to the drastic variations in fMRI signals between subjects and even within the same subject across different trials. To address current limitations in multi-subject brain decoding, here we introduce a novel semantic alignment method of multi-subject fMRI signals using so-called $\textit{MindFormer}$. This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation. More specifically, MindFormer incorporates two key innovations: 1) a subject specific token that effectively capture individual differences in fMRI signals while synergistically combines multi subject fMRI data for training, and 2) a novel feature embedding and training scheme based on the IP-Adapter to extract semantically meaningful features from fMRI signals. Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects. Since our MindFormer maintains semantic fidelity by fully utilizing the training data across different subjects by significantly surpassing existing models in multi-subject brain decoding, this may help deepening our understanding of neural processing variations among individuals.
Primary Area: applications to neuroscience & cognitive science
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8890
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview