Deep Geodesic Canonical Correlation Analysis for Covariance-Based Neuroimaging Data

Published: 16 Jan 2024, Last Modified: 15 Mar 2024ICLR 2024 spotlightEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Geometric Deep Learning, Self-Supervised Learning, Brain-Computer Interfaces, Neuroimaging, Neuroscience
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: A geometric deep learning-based approach to learn the SPD matrix-valued latent representation for paired covariance-based neuroimaging modalities under the self-supervised learning framework.
Abstract: In human neuroimaging, multi-modal imaging techniques are frequently combined to enhance our comprehension of whole-brain dynamics and improve diagnosis in clinical practice. Modalities like electroencephalography and functional magnetic resonance imaging provide distinct views to the brain dynamics due to diametral spatiotemporal sensitivities and underlying neurophysiological coupling mechanisms. These distinct views pose a considerable challenge to learning a shared representation space, especially when dealing with covariance-based data characterized by their geometric structure. To capitalize on the geometric structure, we introduce a measure called geodesic correlation which expands traditional correlation consistency to covariance-based data on the symmetric positive definite (SPD) manifold. This measure is derived from classical canonical correlation analysis and serves to evaluate the consistency of latent representations obtained from paired views. For multi-view, self-supervised learning where one or both latent views are SPD we propose an innovative geometric deep learning framework termed DeepGeoCCA. Its primary objective is to enhance the geodesic correlation of unlabeled, paired data, thereby generating novel representations while retaining the geometric structures. In simulations and experiments with multi-view and multi-modal human neuroimaging data, we find that DeepGeoCCA learns latent representations with high geodesic correlation for unseen data while retaining relevant information for downstream tasks.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: applications to neuroscience & cognitive science
Submission Number: 4904
Loading