Tight Clusters Make Specialized Experts

Published: 22 Jan 2025, Last Modified: 02 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Mixture of Experts, robustness, clustering
TL;DR: We propose a novel Mixture-of-Experts routing method that computes token-expert assignments in a transformed space that promotes separation of latent clusters in the data and more easily identifies the best-matched expert for each token.
Abstract:

Sparse Mixture-of-Experts (MoE) architectures have emerged as a promising approach to decoupling model capacity from computational cost. At the core of the MoE model is the router, which learns the underlying clustering structure of the input distribution in order to send input tokens to appropriate experts. However, latent clusters may be unidentifiable in high dimension, which causes slow convergence, susceptibility to data contamination, and overall degraded representations as the router is unable to perform appropriate token-expert matching. We examine the router through the lens of clustering optimization and derive optimal feature weights that maximally identify the latent clusters. We use these weights to compute the token-expert routing assignments in an adaptively transformed space that promotes well-separated clusters, which helps identify the best-matched expert for each token. In particular, for each expert cluster, we compute a set of weights that scales features according to whether that expert clusters tightly along that feature. We term this novel router the Adaptive Clustering (AC) router. Our AC router enables the MoE model to obtain three connected benefits: 1) faster convergence, 2) better robustness to data corruption, and 3) overall performance improvement, as experts are specialized in semantically distinct regions of the input space. We empirically demonstrate the advantages of our AC router over baseline routing methods when applied on a variety of MoE backbones for language modeling and image recognition tasks in both clean and corrupted settings.

Supplementary Material: zip
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4160
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview