Conditional Independence Graph Estimation from Multi-Attribute Dependent Time Series

Published: 01 Jan 2024, Last Modified: 22 Mar 2025MLSP 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Estimation of the conditional independence graph (CIG) of high-dimensional multivariate Gaussian time series from multi-attribute data is considered. All existing methods for graph estimation for such data are based on single-attribute models where one associates a scalar time series with each node. In multi-attribute graphical models, each node represents a random vector or vector time series. In this paper we provide a unified theoretical analysis of multi-attribute graph learning for dependent time series using a penalized log-likelihood objective function. We consider both convex (sparse-group lasso) and non-convex (log-sum and SCAD group penalties) penalty/regularization functions. We establish sufficient conditions in a high-dimensional setting for consistency (convergence of the inverse power spectral density to true value in the Frobenius norm), local convexity when using non-convex penalties, and graph recovery. We illustrate our approach using numerical examples utilizing both synthetic and real data.
Loading